GIUSEPPE SCARASCIA-MUGNOZZA (*) - GIORGIO MATTEUCCI (*)
MASSIMILIANO HAJNY (*) - LEONARDO MONTAGNANI (*) - ALBERTO MASI (*)

GESTIONE FORESTALE SOSTENIBILE E CARBONIO ORGANICO
NEI SUOLI IN AMBIENTE MEDITERRANEO: INQUADRAMENTO
DEL PROBLEMA E ASPETTI METODOLOGICI PER UNA RICERCA
NEL TERRITORIO DEL PARCO NAZIONALE DELLA CALABRIA

FDC 907 : 161.32 : (450.78)

L'indiscusso aumento del contenuto di anidride carbonica nell'atmosfera verificatosi
negli ultimi 120 anni ha generato degli interrogativi sulla capacità degli ecosistemi terre-
stri di sequestrare l'eccesso di carbonio immesso in atmosfera. Nell'ambito degli ecosiste-
mi terrestri il suolo riveste un'importanza fondamentale perché, oltre a immagazzinare
una quantità di carbonio organico più che doppia rispetto alla componente epigea della
vegetazione, conserva una parte di questo carbonio per lunghi periodi di tempo, dell'ordi-
ne di secoli o millenni.

La presente ricerca ha riguardato la quantificazione del carbonio organico del terre-
no in ecosistemi terrestri caratterizzati da tipologie vegetazionali e gestionali marcatamen-
te distinte che possono essere considerati degli stadi di una successione che dal terreno
nudo porta alla faggeta passando per la pineta di pino lario. Nel corso dell'estate del
2000 sono stati individuati, all'interno del Parco Nazionale della Calabria - Sila Grande,
tre tipologie vegetazionali sulle quali effettuare le ricerche: la faggeta, la pineta di pino
laricio ed il pascolo. Nell'ambito delle prime due sono stati distinti il ceduo di faggio dalla
fustaia e il giovane rimboscimento dalla fustaia naturale matura di pino lario.

INTRODUZIONE

Gli ecosistemi forestali svolgono un ruolo fondamentale all'interno dei
principalici cicli biogeochimici globali, in particolare quelli del carbonio e
dell'azoto, con implicazioni di enorme importanza sul clima regionale e glo-
bale. Recentemente le foreste sono state anche inserite nel protocollo di
Kyoto sulla regolazione dei cambiamenti climatici per il contributo che

(*) DISAFRI, Università della Tuscia – Via San Camillo de Lellis, 01100 Viterbo.

- I.F.M. n. 5 anno 2001
possono dare alla riduzione delle emissioni nette di CO₂, nei diversi Paesi.

Purtroppo, le conoscenze sull’impatto delle diverse forme di gestione forestale (rimboschimenti, diradamenti, forme di governo e trattamento, utilizzazioni forestali) sul bilancio di CO₂ e sull’immagazzinamento di carbonio da parte delle foreste sono molto sparse nonostante l’attualità e la rilevanza di queste tematiche (LANDSBERG & GOWER, 1997; SCHULZE et al., 2001), come dimostrato dalla conferenza pan-europea di Helsinki sulla gestione sostenibile delle foreste, la quale prevede appunto «la conservazione e l’ampliamento delle risorse forestali e del loro contributo al ciclo globale di carbonio».

Le foreste, soprattutto quelle temperate, contribuiscono attualmente per circa il 25% a ridurre le emissioni di CO₂ dovute all’uso di combustibili fossili, accumulando carbonio sia sotto forma di biomassa che di sostanza organica nel suolo; quest’ultima forma di accumulo è di enorme importanza poiché a livello di biosfera corrisponde a circa tre volte il carbonio immagazzinato come biomassa (1750±250 PgC vs. 550±100 Pg, ROYAL SOCIETY, 2001); inoltre, sono proprio gli ecosistemi forestali che contengono circa il 50% di tutto il carbonio presente nel suolo delle terre emerse (SCHLESINGER, 1997).

La definizione e l’applicazione di criteri per la gestione sostenibile delle foreste, pertanto, richiede una conoscenza molto più approfondita dell’impatto dei diversi sistemi di gestione del territorio forestale sui diversi comparti nei quali è conservata la sostanza organica del terreno.

PERCHÈ STUDIARE IL CARBONO ORGANICO NEI SUOLI FORESTALI

L’assorbimento netto di carbonio di una foresta viene determinato dai processi di fotosintesi e respirazione. La respirazione del suolo, causata sia da processi autotrofi (respirazione radicale) che eterotrofi (decomposizione di lettiera e sostanza organica dei suoli), può rappresentare il 60-70% di quella totale dell’ecosistema (JANSSENS et al., 2001). Nel contributo degli ecosistemi terrestri al ciclo del carbonio totale, il flusso di carbonio dovuto alla respirazione dei suoli è infatti inferiore solamente a quello della fotosintesi lorda.

In foreste a copertura piena, le radici possono contribuire tra il 30 ed il 60% alla respirazione del suolo (BOWDEN et al., 1993, KELTING, BURGER & EDWARDS, 1998, EPRON et al., 1999b, MATTEUCCI et al., 2000), mentre il resto è dovuto ai processi di decomposizione che, nei sistemi forestali, rappresenta la quasi totalità della respirazione eterotrofa (WARING & SCHLESINGER, 1985).
Mentre la biomassa legnosa soprattutto è generalmente ben conosciuta e studiata, i pool di carbonio nei suoli, la loro longevità (tempo di residenza) e i tassi di accumulo sono stati raramente studiati.

Una recente sperimentazione a livello europeo ha mostrato che il contenuto di carbonio e azoto in terreni forestali dell’Appennino Centro-meridionale è tra i più alti tra quelli delle foreste europee esaminate (PERSSON et al., 2000a), mentre il tempo medio di residenza è risultato in generale elevato e crescente con la profondità di campionamento (HARRISON et al., 2000) (tabella 1).

<table>
<thead>
<tr>
<th>Strato</th>
<th>T ha⁻¹</th>
<th>MRT (anni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lettiera</td>
<td>6.08</td>
<td>5</td>
</tr>
<tr>
<td>0-5 cm</td>
<td>24.06</td>
<td>65</td>
</tr>
<tr>
<td>5-10 cm</td>
<td>23.38</td>
<td>55</td>
</tr>
<tr>
<td>10-20 cm</td>
<td>36.47</td>
<td>440</td>
</tr>
<tr>
<td>30-50 cm</td>
<td>120</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Nonostante questo, i tassi di mineralizzazione annui sono risultati relativamente modesti (0.8-1.2 tC ha⁻¹ a⁻¹, HARRISON et al., 2000; PERSSON et al., 2000b), indicando che le caratteristiche dei suoli forestali studiati hanno un ruolo nella conservazione del carbonio accumolato e che le potenzialità di accumulo di Carbonio dei nostri terreni forestali possono essere molto rilevanti.

Inoltre, lo stesso studio ha messo in evidenza, per quasi tutti i siti studiati, che la produttività primaria netta e la produzione di lettiera tendano ad aumentare con la disponibilità di azoto (naturale e di deposizione) e che la seconda ha mostrato di aumentare maggiormente (SCHULZE et al., 2000). Lo studio ha riportato un generale sbilanciamento tra i tassi di decomposizione e l’apporto di lettiera: conseguentemente l’accumulo di carbonio a livello di terreno e suolo forestale è risultato in aumento, in particolare per i siti a maggiore disponibilità di azoto. È interessante notare che, sia per il tipo di ecosistemi studiati che per le condizioni, lo studio non ha mostrato la presenza di un limite superiore alle potenzialità di accumulo di carbonio nei suoli forestali, a meno che non si verifichino variazioni nelle condizioni ambientali o eventi di disturbo particolari (SCHULZE et al., 2000). Risulta quindi fondamentale capire a fondo la possibilità dei sistemi forestali di accumulare carbonio nei suoli, soprattutto se si tiene conto che tale componente è quella di più lungo termine, in particolare per comprensori forestali gestiti, per i quali le variazioni di biomassa legnosa sopratterra a livello di compresa sono relativamente costanti.
A livello europeo, tra il 1950 ed il 2000, la biomassa forestale è aumentata considerevolmente. Molto di questo carbonio si trova negli alberi, ma parte di esso è stato accumulato nei suoli, sotto forma di sostanza organica.

In questo quadro generale, ci si è pertanto proposti di svolgere una ricerca sull'effetto che diversi parametri che caratterizzano le coperture forestali, quali composizione specifica (latifoglie vs. conifere), forma di governo (fustaie vs. ceduo), struttura selvicolturale, grado di naturalità (bosco naturale vs. rimboschimento) e età, sul contenuto (pool) di carbonio e azoto del terreno nonché su alcuni importanti fattori legati al processo di decomposizione della sostanza organica (respirazione del suolo, quantità di lettiera, massa microbica, ecc.).

Scelta dei siti e approccio sperimentale

La ricerca è stata portata avanti in ecosistemi forestali (naturali e rimboschimenti) e a pascolo della Regione Calabria. Al di là delle priorità fissate dal progetto orientato «Nuove Metodologie per la Gestione Sostenibile dei Sistemi Forestali complessi nell’Italia Meridionale», la scelta dell’area di studio è stata fatta per motivi ecologici e gestionali: infatti, la Regione Calabria è quella che ha messo in atto, dagli anni ’50, notevoli programmi di rimboschimento. Inoltre, è una delle regioni italiane dove l’impatto delle deposizioni antropogeniche di azoto è limitato a causa della assenza di grossi impianti industriali e del limitato traffico veicolare.

La ricerca ha avuto come obiettivo quello della quantificazione del pool di carbonio nei suoli degli ecosistemi studiati, in relazione alle diverse tipologie di uso del suolo e gestione forestale.

Tra le ipotesi che la ricerca ha cercato di verificare, le seguenti appaiono le più importanti:

- in condizioni ambientali simili, i boschi di conifere presentano un maggior contenuto di C immagazzinato nel terreno;
- i boschi naturali presentano un maggior contenuto di C rispetto ai rimboschimenti;
- il pool di C di una foresta aumenta lungo una crono-sequenza, e ciò quanto più intensa è stata l’alterazione ecologica che ha preceduto l’inizio della successione secondaria (taglio a scelta, taglio a gruppi/rinnovazione, disboscamento/rimboschimento);
- la respirazione del suolo presenta un picco in seguito a tagli selvicolturali intensi.

La ricerca ha interessato delle tipologie vegetazionali e gestionali marcatamente distinte che possono essere considerate degli stadi di una successio-
ne che dal pascolo porta alla faggeta passando per la pineta di pino laricio. La ricerca è stata condotta all'interno di aree di saggio individuate in boschi naturali ad alfo fusto (pinete, faggete) e ceduo (faggete) e in rimboschimenti (pinete) dell'Italia meridionale prestando particolare cura al campionamento di trattamenti selvicolturali e cronosequenze contrastanti fra loro.

Nel corso dell'estate del 2000 sono state individuate, all'interno del Parco Nazionale della Calabria - Sila Grande (figura 1), tre tipologie vegetazionali sulle quali effettuare le ricerche: la faggeta, la pineta di pino laricio ed il pascolo.

![Carta della capacità d'uso delle terre ai fini agricoli e forestali](image)

Figura 1 – Localizzazione del Parco Nazionale della Calabria e della zona della Sila Grande dove sono state selezionate le tipologie d'uso del suolo campionate, tra il Monte Pettinascaro ed il Monte Spina (ovale tratteggiato).

Nell'ambito delle prime due sono stati distinti il ceduo di faggio dalla fustaia e il giovane rimboschimento dalla fustaia naturale matura di pino laricio. In tutto quindi risultano cinque tipologie vegetazionali-gestionali (figura 2):
1. Rimboschimento di pino laricio su precedente pascolo sulla dorsale che procede in direzione Nord da Monte Spina (SPPL, 1);
2. Ceduo di faggio che ricopre la pendice Nord-Ovest della dorsale su cui si trova il rimboschimento sopra menzionato (SPFS, 2);
3. Fustaia di faggio da conversione con alcune porzioni in rinnovazione in località Pettinascura, a Sud-Est del monte omonimo (PscuraFs, 3);
4. Pascolo in località Pettinascura, adiacente alla fustaia di faggio (Pasc, 4);
5. Fustaia naturale matura di pino laricio in località Manca di Scrofa (PLMat, 5).

In ognuna di queste tipologie a partire da punti scelti a caso, tramite sorteggio di direzione e distanza, sono stati individuati cinque punti in cui effettuare i campionamenti. Nel caso delle formazioni boschive, ciascun
punto corrisponde al centro di un’area di saggio del raggio di 8-10 metri per il rilievo dei parametri dendrometrici.

Ogni sito è stato caratterizzato topograficamente da coordinate (con l’uso del sistema GPS), altitudine ed esposizione. L’uso del GPS si è rivelato prezioso per ritrovare la posizione esatta dei siti di campionamento nell’estate 2001, anno nel quale la campagna di misure del 2000 è stata integrata con ulteriori misure.

I campioni di terreno sono stati prelevati tramite carotatore di volume noto. Il campionamento si spingeva di 15 in 15 cm a partire dalla superficie della lettiera fino alla roccia madre o allo strato di roccia fortemente alterata che spesso ricopriva per metri la roccia madre inalterata sulla Sila.

I campioni sono stati portati in laboratorio e conservati in una cella frigorifera a 2°C. Ogni campione è stato prima setacciato per separare lo scheletro di diametro superiore a 9 mm, lo scheletro con diametro compreso fra i 2 ed i 9 mm e la terra. I frammenti di particolato e radici che non passavano attraverso le maglie di 9 e 2 mm dei setacci sono state comunque separate dallo scheletro ed aggiunte alla terra. Ciascun campione di terra così ottenuto veniva suddiviso in due parti: in una è stato effettuato il setacciamento con acqua (_wet sieving_) con un setaccio a maglia di 0.4 mm e successivamente la separazione delle radici e del particolato; l’altra parte è stata conservata tal quale senza setacciamento. Su quest’ultima porzione, sono state effettuate le analisi del carbonio organico totale (TOC), dal quale verrano poi distinti i contributi dovuti al carbonio presente nel particolato organico e nelle radici da quello del carbonio organico del suolo, tramite analisi separata della porzione setacciata con il _wet sieving_. Il tutto è stato pesato sia allo stato fresco che allo stato secco dopo essiccazione in stufa a 80°C fino a peso costante.

La densità apparente è stata valutata tramite il metodo dei cindri di volume noto su tre profili per ogni tipologia di uso del suolo campionata. In ogni profilo venivano presi da 2 a 3 campioni ogni 15 cm di profondità (fino a 45 cm). Nei quattro popolamenti forestali, la lettiera presente al suolo è stata campionata su cinque quadrati di 0.5 m di lato e suddivisa nelle diverse componenti (foglie e/o aghi, rametti, coni e/o semi). Per determinare la biomassa erbacea presente nel pascolo sono state raccolte tre _zolle_ erbose quadrate (lato 0.5 m). L’indice di area fogliare (LAI) è stato misurato con il LiCor LAI2000, mentre la struttura forestale è stata caratte-
rizzata tramite l’analisi di cinque aree di saggio circolari di 8-10 m di raggio, centrate su ciascuno dei punti di campionamento.

Una schematizzazione delle componenti campionate è riportata in figura 3.

![Diagramma](image)

Figura 3 - Schematizzazione delle componenti di un ecosistema forestale. Le componenti sottolineate sono state campionate direttamente in questo studio, mentre la biomassa soprasserra è stata valutata tramite relazioni allometriche.

RISULTATI PRELIMINARI

Nelle varie tipologie forestali, il diametro massimo delle radici trovate nei campioni è di 10 mm ma, nella gran parte dei casi, non ha superato i 5 mm. In termini di biomassa radicale non sembra ci siano differenze significative fra pascolo, rimboschimento di pino laricio e pineta naturale matura di pino laricio, mentre la faggeta presenta valori nettamente più elevati.
Per quanto riguarda la lettiera ed il particolato organico all’interno del profilo del suolo, è interessante notare che mentre nella faggeta la quantità non sembra differire sensibilmente dalla quantità di radici, almeno negli strati superiori, nel pascolo e nelle pinete accade che la prima sia notevolmente superiore alla seconda. Se si confrontano i valori fra le diverse tipologie si individua una certa tendenza all’aumento di lettiera e particolato nel suolo passando dal pascolo alla pineta matura (sia pure con differenze non molto significative fra pascolo e rimboschimento), un calo passando da quest’ultima al ceduo di faggio e di nuovo un aumento passando alla fustaia.

Sommando lettiera e particolato alle radici si nota ancora una tendenza all’aumento dei valori della sostanza organica legata a queste frazioni con il procedere della successione, ma con una variabilità piuttosto elevata all’interno di ciascuna tipologia.

In tabella 2, viene presentato il confronto preliminare tra il rimboschimento di pino laricio e il ceduo di faggio della zona di Monte Spina. Come si può vedere, il carbonio nel suolo, nella lettiera e nelle radici del ceduo di faggio è sempre superiore a quello della pineta giovane di laricio. La differenza è particolarmente importante per la quantità di radici, che è di ben 4 volte superiore nel ceduo di faggio, indicando come questa tipologia di governo tenda a conservare la biomassa radicale, con successivo stimolo per la produzione di radici fini e medie. Va però segnalato che il fatto che il ceduo di faggio si trovi su un pendio, mentre il rimboschimento sia stato impiantato su terrazzature sulla sommità di un’elevazione, può determinare parte della differenza riportata in tabella 2. In ambedue le tipologie forestali, il carbonio organico rappresenta la gran parte del carbonio totale (63% per il pino, 57% per il ceduo di faggio), confermando l’importanza di tale componente per l’immagazzinamento del carbonio negli ecosistemi forestali. A tale riguardo, un’analisi completa di tutti i dati raccolti durante questa ricerca è attualmente in corso di svolgimento e verrà riportata in una pubblicazione in fase di preparazione.

Tabella 2 – Carbonio presente nelle varie frazioni organiche del profilo del suolo del rimboschimento di pino laricio e del ceduo di faggio campionati nella presente ricerca. Dati preliminari per i primi 45 cm. Per la lettiera e le radici si è assunto un contenuto di carbonio pari al 50% della sustaining secca.

<table>
<thead>
<tr>
<th></th>
<th>Rimboschimento di pino tC ha⁻¹</th>
<th>Ceduo di faggio tC ha⁻¹</th>
<th>Rapporto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lettiera in superficie</td>
<td>6.8</td>
<td>9.3</td>
<td>1.37</td>
</tr>
<tr>
<td>Lettiera nel suolo</td>
<td>43.5</td>
<td>51.6</td>
<td>1.13</td>
</tr>
<tr>
<td>Radici fine e medie</td>
<td>11.7</td>
<td>48.3</td>
<td>4.13</td>
</tr>
<tr>
<td>Carbonio organico</td>
<td>110.4</td>
<td>147.1</td>
<td>1.33</td>
</tr>
<tr>
<td>Carbonio totale</td>
<td>174.4</td>
<td>256.3</td>
<td>1.47</td>
</tr>
</tbody>
</table>
SUMMARY

Sustainable forest management and soil organic carbon
in the Mediterranean environment: a case-study in the National Park of Calabria

The world-wide increase of the atmospheric concentration of carbon dioxide is one of the most indisputable evidence of a globally changing environment. In fact, the composition of the atmosphere has been changing rapidly during the 20th century with a speed that is even increasing, in the last decade. Although the impact of carbon dioxide and the other greenhouse gases over the global climate and indirectly on plants is being progressively elucidated, these gases have also a direct effect on trees and forest ecosystems. This could affect the productivity of forests but, also, may influence the future ability of terrestrial ecosystems to absorb carbon and other greenhouse compounds, therefore increasing or reducing the mitigation potential of forests over global change. Most of the carbon stocked in forest is stored in the soil compartment where the residence time can be as high as centuries or even thousand years.

In this research we have quantified the organic carbon stored in the soil of contrasting ecosystems of the National Park of Calabria, in Southern Italy; the vegetation cover of these ecosystems spans from grassland to a pine forest and a beech tree stand. Within the forest ecosystems contrasting management types have also been considered: a young, planted pine stand vs. a mature pine forest and a coppiced beech forest vs. a beech high-stand.

BIBLIOGRAFIA

